Learning Theory from First Principles
A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory.

Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures. Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates to their practical performance. Bach provides the simplest formulations that can be derived from first principles, constructing mathematically rigorous results and proofs without overwhelming students. 

  • Provides a balanced and unified treatment of most prevalent machine learning methods 
  • Emphasizes practical application and features only commonly used algorithmic frameworks 
  • Covers modern topics not found in existing texts, such as overparameterized models and structured prediction 
  • Integrates coverage of statistical theory, optimization theory, and approximation theory
  • Focuses on adaptivity, allowing distinctions between various learning techniques
  • Hands-on experiments, illustrative examples, and accompanying code link theoretical guarantees to practical behaviors
1145170047
Learning Theory from First Principles
A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory.

Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures. Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates to their practical performance. Bach provides the simplest formulations that can be derived from first principles, constructing mathematically rigorous results and proofs without overwhelming students. 

  • Provides a balanced and unified treatment of most prevalent machine learning methods 
  • Emphasizes practical application and features only commonly used algorithmic frameworks 
  • Covers modern topics not found in existing texts, such as overparameterized models and structured prediction 
  • Integrates coverage of statistical theory, optimization theory, and approximation theory
  • Focuses on adaptivity, allowing distinctions between various learning techniques
  • Hands-on experiments, illustrative examples, and accompanying code link theoretical guarantees to practical behaviors
46.99 Pre Order
Learning Theory from First Principles

Learning Theory from First Principles

by Francis Bach
Learning Theory from First Principles

Learning Theory from First Principles

by Francis Bach

eBook

$46.99 
Available for Pre-Order. This item will be released on December 24, 2024

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory.

Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures. Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates to their practical performance. Bach provides the simplest formulations that can be derived from first principles, constructing mathematically rigorous results and proofs without overwhelming students. 

  • Provides a balanced and unified treatment of most prevalent machine learning methods 
  • Emphasizes practical application and features only commonly used algorithmic frameworks 
  • Covers modern topics not found in existing texts, such as overparameterized models and structured prediction 
  • Integrates coverage of statistical theory, optimization theory, and approximation theory
  • Focuses on adaptivity, allowing distinctions between various learning techniques
  • Hands-on experiments, illustrative examples, and accompanying code link theoretical guarantees to practical behaviors

Product Details

ISBN-13: 9780262381369
Publisher: MIT Press
Publication date: 12/24/2024
Series: Adaptive Computation and Machine Learning series
Sold by: Penguin Random House Publisher Services
Format: eBook
Pages: 496

About the Author

Francis Bach is a researcher at Inria where he leads the machine learning team which is part of the Computer Science department at Ecole Normale Supérieure. His research focuses on machine learning and optimization.
From the B&N Reads Blog

Customer Reviews