Monte Carlo Simulation

Monte Carlo Simulation is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind Monte Carlo Simulation and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

Monte Carlo Simulation will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.


will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.
1101105075
Monte Carlo Simulation

Monte Carlo Simulation is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind Monte Carlo Simulation and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

Monte Carlo Simulation will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.


will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.
39.0 In Stock
Monte Carlo Simulation

Monte Carlo Simulation

by Christopher Z. Mooney
Monte Carlo Simulation

Monte Carlo Simulation

by Christopher Z. Mooney

eBook

$39.00 
Collect stamps to save with Rewards. 10 stamps = $5 reward

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Monte Carlo Simulation is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind Monte Carlo Simulation and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

is a method of evaluating substantive hypotheses and statistical estimators by developing a computer algorithm to simulate a population, drawing multiple samples from this pseudo-population, and evaluating estimates obtained from these samples. Christopher Z. Mooney explains the logic behind and demonstrates its uses for social and behavioral research in conducting inference using statistics with only weak mathematical theory, testing null hypotheses under a variety of plausible conditions, assessing the robustness of parametric inference to violations of its assumptions, assessing the quality of inferential methods, and comparing the properties of two or more estimators. In addition, Mooney carefully demonstrates how to prepare computer algorithms using GAUSS code and illustrates these principles using several research examples.

Monte Carlo Simulation will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.


will enable researchers to effectively execute Monte Carlo Simulation and to interpret the estimated sampling distribution generated from its use.

Product Details

ISBN-13: 9781506317908
Publisher: SAGE Publications
Publication date: 04/07/1997
Series: Quantitative Applications in the Social Sciences , #116
Sold by: Barnes & Noble
Format: eBook
Pages: 112
File size: 2 MB
From the B&N Reads Blog

Customer Reviews

Recently Viewed